نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار مؤسسه تحقیقات فنی و مهندسی کشاورزی

چکیده

ویژگی­های هیدرولیکی خاک از مشخصه­های مهم فیزیکی خاک هستند که براورد آنها در اکثر مطالعات آب و خاک از جمله آبیاری و زهکشی اهمیتی ویژه دارد.  در این پژوهش، روش نیمه تجربی آریا و همکاران به عنوان یک روش ساده، سریع، و به نسبت کم هزینه برای تخمین ویژگی­های هیدرولیکی خاک با دو روش مدل­سازی معکوس و توابع انتقالی در یک خاک لوم­شنی مقایسه شد و برای شبیه­سازی رطوبت خاک در زیر جویچه­های آبیاری به­کار گرفته شد.  در روش آریا و همکاران، ویژگی­های هیدرولیکی خاک شامل کلیة پارامترهای منحنی مشخصة آب خاک ون­گنوختن و مدل هدایت هیدرولیکی معلم- ون­گنوختن از روی منحنی دانه­بندی خاک براورد شدند.  در روش تابع انتقالی از نرم­افزار ROSETTA استفاده شد.  در روش مدل­سازی معکوس از رطوبت­های اندازه­گیری شده در خاک، یک مدل ریاضی مناسب که بیان کننده روابط حاکم بر پدیده باشد، و یک الگوریتم بهینه­سازی برای کمینه کردن یک تابع هدف استفاده ­شد.  در این تحقیق، از مدل HYDRUS-2D برای شبیه­سازی رطوبت خاک در زیر جویچه­های آبیاری و همچنین تخمین ویژگی­های حساس هیدرولیکی خاک (شامل پارامترهای n،sθ،Ks  در منحنی مشخصة آب خاک ون­گنوختن و مدل هدایت هیدرولیکی- رطوبت معلم- ون­گنوختن) به روش مدل­سازی معکوس استفاده گردید.  برای مقایسة روش­های مختلف براورد ویژگی­های هیدرولیکی خاک، رطوبت خاک در زیر جویچه­های آبیاری شبیه­سازی و با مقایسه با مقادیر اندازه­گیری شده مزرعه­ای طی دو آبیاری متوالی به­ روش آزمون t ارزیابی شد.  نتایج نشان می­دهد که مدل­سازی معکوس و روش آریا و همکاران با کمترین RMSE بیشترین تطابق را با مقادیر اندازه­گیری شده دارند.  روش­ تابع انتقالی در اغلب موارد مقادیر رطوبت را بیش از مقادیر اندازه­گیری شده براورد می­کند. 

عنوان مقاله [English]

Assessment of Indirect Methods to Estimate Soil Hydraulic Properties for Simulating Soil Moisture in a Sandy Loam Soil

چکیده [English]

Soil hydraulic properties are key soil physical characteristics that are required to conduct soil and water related studies such as irrigation and drainage. In this study, three indirect methods: inverse modeling, pedo-transfer function, and the semi-physical method of Arya et al., were compared in a sandy loam soil to estimate soil moisture retention and unsaturated hydraulic conductivity curves. Subsequently, they were applied to simulate soil moisture in irrigated furrows. In the indirect methods, soil hydraulic properties were estimated from easily measured soil data. Using the neural network-based pedo-transfer function of ROSETTA code, soil hydraulic parameters were obtained from soil textural fractions (percentage of sand, silt and clay), bulk density, and two water retention points as input. In the inverse method, the most sensitive soil hydraulic properties were estimated using the Levenberg-Marquardt optimization algorithm in combination with the HYDRUS-2D numerical code. In the semi-physical method, both soil retention and unsaturated hydraulic conductivity curves were predicted from a particle size distribution curve. The predicted soil hydraulic properties were applied to simulate soil moisture below the irrigated furrows during two subsequent irrigations. The results showed that the inverse modeling and Arya et al. methods predicated the soil water content well in the experimental furrows while the pedo-transfer function of ROSETTA overestimated soil water content.

کلیدواژه‌ها [English]

  • Arya et al
  • Inverse modeling
  • Pedo-Transfer Functions
  • Soil Hydraulic Properties
Abbasi, F., Jacques, D., Simunek, J., Feyen, J., and van Genuchten, M. Th. 2003a. Inverse estimation of the soil hydraulic and solute transport parameters from transient field experiments: Heterogeneous soil. Trans. ASAE. 46(4): 1097-1111.
Abbasi, F., Simunek, J., Feyen, J., van Genuchten, M. Th. and Shouse, P. J. 2003b. Simultaneous inverse estimation of the soil hydraulic and solute transport parameters from transient field experiments: Homogeneous soil. Trans. ASAE. 46 (4): 1085-1095.
Abbasi, F., Adamsen, F. J., Hunsaker, D. J., Feyen, J., Shouse, P., and van Genuchten, M. Th. 2003c. Effects of water depth on water flow and solute transport in furrow irrigation: Field data analysis. J. Irrig. Drain. Eng. 129(4): 237-246.
Abbasi, F., Feyen, J. and van Genuchten, M. Th. 2004. Two dimensional simulations of water flow and solute transport below furrows: Model calibration and validation. J. Hydrol. 290(1-2): 63-79.
Arya, M. L. and Paris, J. F. 1981. A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45, 1023-1030.
Arya, M. L., Leij, F. J., van Genuchten, M. Th. and Shouse, P. J. 1999a. Scaling parameter to predict the soil water characteristic from particle-size distribution data. Soil Sci. Soc. Am. J. 63(3): 510-519.
Arya, M. L., Leij, F. J., Shouse, P. J., and van Genuchten, M. Th. 1999b. Relationship between the hydraulic conductivity and particle-size distribution. Soil Sci. Soc. Am. J. 63(5):1063-1070.
Carsel, R. F. and Parrish, R. S. 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24, 755-769.
Hupet, F., Lambot, S., Feddes, R. A., van Dam, J. C.  and Vanclooster, M.  2003. Estimation of root water uptake parameters by inverse modeling with soil water content data, Water Resour. Res. 39(11): 1312-1320.
Islam, N., Wallender, W. W., Mitchell, J. P., Wicks, S. and Howitt, R. E. 2006. Performance evaluation of methods for the estimation of soil hydraulic parameters and their suitability in a hydrologic model. Geoderma J. 134(1-2): 135-151.
Jacques, D. 2000. Analysis of water flow and solute transport at the field scale. Ph.D Dissertation. No. 454. K. U. Leuven. Fac. Landbouwkundige en Toegepaste Biologische Wetenschappen. Leuven, Belgium.
Klute, A. 1986. Water retention: Laboratory methods. In: Klute, A. (Ed.) Methods of soil analysis: Part I: Physical and Mineralogical Methods. Agronomy. 9(1): 635-662.
Kodesova, R., Ordway, S. E. Gribb, M. M. and Simunek, J. 1999. Estimating of soil hydraulic properties with cone permeameter: Field studies. Soil Sci. 163(6): 436-453.
Kool, J. B., Parker, J. C. and Van Genuchten, M. Th. 1987. Parameter estimation for unsaturated flow and transport models. J. Hydrol. 91, 255-293.
Kosugi, K. 1999. General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution. Soil Sci. Soc. Am. J. 63, 270-277.
Lambot, S., Hupet, F., Javaux, M. and Vanclooster, M. 2004. Laboratory evaluation of hydrodynamic inverse modeling method based on water content data. Water Resour. Res. 40, 1-12.
Lee, D. H. 2005. Comparing the inverse parameter estimation approach with pedo-transfer function method for estimating soil hydraulic conductivity. Geosciences J. 9(3): 269-276.
Majnooni-Haris, A., Zand-Parsa, Sh., Sepaskhah, A. R. and Kamkar-Haghighi, A. A. 2004. Prediction of soil hydraulic characteristics with inverse method in field condition. The 9th Soil Science Congress of Iran. Sept. 15-16. (in Farsi)
Marquardt, D. W. 1963. An algorithm for least squares estimation of non–linear parameters. J. Ind. Appl. Math. 11, 431–441.
Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3): 513-522.
Schaap, M. G. and Leij, F. J. 1998. Database related accuracy and uncertainty of pedotransfer functions. Soil Sci. 163, 765-779.
Schaap, M. G., Leij, F. J. and van Genuchten, M. Th. 2001. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol.251, 163–176.
Simunek, J., Sejna, M. and van Genuchten, M. Th. 1999. The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably saturated media, Version 2.0. IGWMC-TPS-70. Int. Ground Water Modeling Center. Colorado School of Mines. Golden Co.
van Genuchten, M. Th. 1980. A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am.  J. 44(5): 892–898.
Wosten, J. H. M., Lilly, A., Nemes, A. and Le Bas, C. 1999. Development and use of a database of hydraulic properties of European soils. Geoderma J. 90, 169-185.
Zakerinia, M., Abbasi, F. and Sohrabi, T. 2007. Evaluating temporal variations of soil hydraulic properties using inverse optimization technique. J. Agric. Eng. Res. 8(3): 17-30. (in Farsi).
Zand-Parsa, Sh. and Sepaskhah, A. R. 2004. Soil hydraulic conductivity function based on specific liquid vapor interfacial area around the soil particles. Geoderma J. 119, 143-157.
Zuo, Q. and Zhang, R. 2002. Estimating root water uptake using an inverse method. Soil Sci. 167(9): 561-571.
Zuo, Q., Lie, M. and  Zhang, R. 2004. Simulating soil water flow with root water uptake applying an inverse method. Soil Sci. 169(1): 13-24.